Human telomerase domain interactions capture DNA for TEN domain-dependent processive elongation.
نویسندگان
چکیده
Eukaryotic chromosome maintenance requires telomeric repeat synthesis by telomerase. It remains uncertain how telomerase domains interact to organize the active RNP and how this architecture establishes the specificity of the catalytic cycle. We combine human telomerase reconstitutions in vivo, affinity purifications, and discriminating activity assays to uncover a network of protein-protein and protein-RNA domain interactions. Notably, we find that complete single-repeat synthesis requires only a telomerase reverse transcriptase (TERT) core. Single-repeat synthesis does not require the TERT N-terminal (TEN) domain, but RNA-dependent positioning of the TEN domain captures substrate and allows repeat synthesis processivity. A TEN domain physically separate from the TERT core can capture even a minimal template-paired DNA substrate, with substrate association enhanced by the presence of a 5' single-stranded extension. Our results provide insights into active enzyme architecture, explain biological variations of the catalytic cycle, and predict altered activities for TERT proteins of some eukaryotes.
منابع مشابه
Processive utilization of the human telomerase template: lack of a requirement for template switching.
The ribonucleoprotein telomerase is a specialized reverse transcriptase minimally composed of an RNA, TER, and a protein catalytic subunit, TERT. The TER and TERT subunits of telomerase associate to form a dimeric enzyme in several organisms, including human. A small portion of TER, the template domain, is used by telomerase for the synthesis of tandem repeats of telomeric DNA. We studied some ...
متن کاملStructure and function of the N-terminal domain of the yeast telomerase reverse transcriptase
The elongation of single-stranded DNA repeats at the 3'-ends of chromosomes by telomerase is a key process in maintaining genome integrity in eukaryotes. Abnormal activation of telomerase leads to uncontrolled cell division, whereas its down-regulation is attributed to ageing and several pathologies related to early cell death. Telomerase function is based on the dynamic interactions of its cat...
متن کاملHuman telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step.
Telomerases constitute a group of specialized ribonucleoprotein enzymes that remediate chromosomal shrinkage resulting from the "end-replication" problem. Defects in telomere length regulation are associated with several diseases as well as with aging and cancer. Despite significant progress in understanding the roles of telomerase, the complete structure of the human telomerase enzyme bound to...
متن کاملDirect involvement of the TEN domain at the active site of human telomerase
Telomerase is a ribonucleoprotein that adds DNA to the ends of chromosomes. The catalytic protein subunit of telomerase (TERT) contains an N-terminal domain (TEN) that is important for activity and processivity. Here we describe a mutation in the TEN domain of human TERT that results in a greatly increased primer K(d), supporting a role for the TEN domain in DNA affinity. Measurement of enzyme ...
متن کاملFunctional interaction between telomere protein TPP1 and telomerase.
Human chromosome end-capping and telomerase regulation require POT1 (Protection of Telomeres 1) and TPP1 proteins, which bind to the 3' ssDNA extension of human telomeres. POT1-TPP1 binding to telomeric DNA activates telomerase repeat addition processivity. We now provide evidence that this POT1-TPP1 activation requires specific interactions with telomerase, rather than it being a DNA substrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 42 3 شماره
صفحات -
تاریخ انتشار 2011